Highly Enantioselective Fluorination of Unprotected 3-Substituted Oxindoles: One-Step Synthesis of BMS 204352 (MaxiPost)

Jun Li, Yunfei Cai, Weiliang Chen, Xiaohua Liu, Lili Lin, and Xiaoming Feng*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China

Supporting Information

ABSTRACT: The catalytic enantioselective fluorination of N–H-free 3-substituted oxindoles was accomplished by a Sc(III)/N,N'-dioxide complex. Under mild reaction conditions, a series of 3-aryl- and 3-alkyl-3-fluoro-2-oxindoles were obtained in excellent yields (up to 98%) and enantioselectivities (up to 99% ee) by using N-fluorobisbenzenesulfonimide (NFSI) as the fluorination agent. MaxiPost was synthesized efficiently in 81% yield with 96% ee.

INTRODUCTION

In the last decades, fluorine-containing compounds have drawn the attention of synthetic chemists, owing to their specific properties in materials and pharmaceuticals.¹ The enantioselective electrophilic fluorination of carbonyl compounds stands for one of the most efficient strategies for the construction of chiral fluorine-containing compounds.² The asymmetric fluorinations of 1,3-dicarbonyl compounds and aldehydes were the pioneering works in this field.³ Subsequently, N-Boc-protected oxindoles were proven to be suitable substrates, and meanwhile the introduction of a fluorine atom at the 3position of oxindoles was very fascinating in enhancing pharmaceutical efficiency. (S)-(+)-BMS-204352 (MaxiPost), which was identified as a promising agent for the treatment of stroke, is one such example.⁴ After Shibata^{5a} and Cahard^{5b} independently reported a stoichiometric cinchona alkaloid derivative⁶ promoted asymmetric synthesis of BMS-204352 in 2003, the catalytic enantioselective fluorination of N-Bocprotected oxindoles was also established using catalysts such as (S)-DM-BINAP-Pd(II) complex, chiral dbfox-Ph-Ni(II) or boxmi-Ni(II) complex, and bis-cinchona alkaloids.^{7,8}

In comparison, unprotected 3-substituted oxindoles are relatively less acidic carbon nucleophiles.⁹ Their fluorination is still limited, although it would afford the desired medicinal objects without the laborious procedures for protecting substrates and deprotection of the products (Scheme 1). In view of the purpose of ideal synthesis^{10a} and protecting-group-free synthesis,^{10b} direct catalytic asymmetric fluorination of unprotected oxindoles is still necessary. Herein, we report an N,N'-dioxide-Sc(OTf)₃ complex¹¹ catalyzed direct fluorination of unprotected 3-aryl- and 3-alkyloxindoles to afford the corresponding 3-fluorinated oxindoles with excellent outcomes.

RESULTS AND DISCUSSION

Initially, the asymmetric fluorination was carried out with unprotected 3-(4-methoxybenzyl)-2-oxindole $1aa^{12}$ and N-

fluorobenzenesulfonimide (NFSI) using 10 mol % of L1- $Sc(OTf)_3$ complex as the catalyst (Figure 1). In the absence of a base additive, no product was observed (Table 1, entry 1). Considering that base might promote the enolization of oxindole, we tested a series of bases to initiate the reaction (Table 1, entries 2-6). The results indicated that the Brønsted basicity of the base played an important role in governing the rate and enantioselectivity of the fluorination reaction. The stronger the Brønsted basicity, the higher the yield and lower the enantioselectivity of the product (Table 1, entries 2-5). To our delight, when Na₂CO₃ was added, the desired fluorinated product 2aa was obtained in 78% yield with 77% ee (Table 1, entry 3). The organic base i-Pr₂NEt gave a relatively lower yield because of the decomposition of NFSI (Table 1, entry 6 vs entry 3). Other fluorinating reagents were found to be sluggish in the catalytic system (Table 1, entries 7 and 8).

Investigation of Lewis acids¹³ showed that the coordination of L1 with Ni(ClO₄)₂·6H₂O, Mg(OTf)₂, Y(OTf)₃, and La(OTf)₃ gave low yields and enantioselectivities in this reaction (Table 2, entries 2–5 vs entry 1). The screening of the chiral amino acid backbone of the ligand suggested that the chiral *N*,*N'*-dioxide L2 derived from (*S*)-pipecolic acid and 2,6diisopropylaniline exhibited a superior result (84% yield, 87% ee; Table 2, entry 6 vs entries 1 and 7). Less steric hindered substituents at the ortho positions of aniline gave unsatisfactory ee's (Table 2, entry 6 vs entries 8–10). Both the ligand and the metal ion could direct a switch in enantioselectivity slightly (Table 2, entries 5 and 10).

Subsequently, the effect of solvent and temperature was surveyed as shown in Table 3. Solvents, such as methanol, diethyl ether, and toluene, gave less satisfactory results (Table 3, entries 2-4). Reactions in EtOAc and THF afforded higher yields but slightly lower enantioselectivities (Table 3, entries 5

Received: August 10, 2012 Published: October 2, 2012

Scheme 1. Catalytic Asymmetric Synthesis of MaxiPost

Figure 1. Ligands screened in this work.

Table 1. Screen of the Base Additives and Fluorinating Agents

PME N H 1aa	3 D + NFSI — C	L1-Sc(OTf) ₃ (1:1, 10 mol%) CH ₂ Cl ₂ , 20 °C , 20 h, base (120 mol%)	F PMB N H 2aa
entry ^a	base	yield ^b (%)	ee ^c (%)
1	no	n.r.	n.d.
2	Li ₂ CO ₃	13	62
3	Na_2CO_3	78	77
4	K ₂ CO ₃	80	71
5	Cs_2CO_3	85	21
6^d	<i>i</i> -Pr ₂ NEt	15	12
7^e	Na ₂ CO ₃	n.r.	n.d.
8 ^{<i>f</i>}	Na_2CO_3	17	10

"Unless otherwise noted, all reactions were performed with L1-Sc(OTf)₃ (1/1, 10 mol %), base (0.12 mmol), 1aa (0.1 mmol, PMB = p-methoxybenzyl), and NFSI (N-fluorobenzenesulfonimide, 0.12 mmol) in CH₂Cl₂ (0.5 mL) under N₂ at 20 °C for 20 h. ^bIsolated yield; n.r. = no reaction. ^cDetermined by HPLC analysis; n.d. = not determined. ^di-Pr₂NEt led to the decomposition of NFSI. ^eN-Fluoropyridinium triflate was used instead of NFSI. ^fSelectfluor was used instead of NFSI.

and 6). Comparatively, chlorinated alkanes gave better results (Table 3, entries 7-9). Pleasingly, the enantioselectivity increased to 95% ee using CHCl₃ as the solvent (Table 3, entry 9). Meanwhile, the reaction temperature was found to have a slight effect on the reaction under these conditions. Lowering the reaction temperature to 0 °C further improved the ee to 97% (Table 3, entries 10 and 11). Importantly, the catalyst loading could decrease to 5 mol % without loss of the yield and enantioselectivity in a prolonged reaction time (Table 3, entry 12).

With the optimized reaction conditions in hand (Table 3, entry 12), the generality of the protocol for different unprotected 3-substituted oxindoles was explored. As shown in Table 4, the reactions performed well with a series of 3benzyl-substituted oxindoles. The electronic nature and the position of substituents on the C3-benzyl ring had little influence on the yields and enantiomeric excesses (80-98%

PMB N N H		L-Metal (1 : 1, 10 mo Na ₂ CO ₃ (120 I	1%) mol%) [[F PMB
		CH ₂ Cl ₂ , 20 °C	, 20 h	N H
1aa			:	2aa
entry ^a	metal	ligand	yield ^{b} (%)	ee ^c (%)
1	Sc(OTf) ₃	L1	78	77
2	$Ni(ClO_4)_2 \cdot 6H_2O$	L1	20	<5
3	$Mg(OTf)_2$	L1	16	<5
4	Y(OTf) ₃	L1	19	17
5	$La(OTf)_3$	L1	11	-13
6	Sc(OTf) ₃	L2	84	87
7	Sc(OTf) ₃	L3	75	88
8	Sc(OTf) ₃	L4	80	75
9	Sc(OTf) ₃	L5	80	50
10	Sc(OTf) ₃	L6	95	-13

^aAll reactions were performed with L-Sc(OTf)₃ (1/1, 10 mol %), Na₂CO₃ (0.12 mmol), 1aa (0.1 mmol), and NFSI (0.12 mmol) in CH₂Cl₂ (0.5 mL) under N₂ at 20 °C for 20 h. ^bIsolated yield. ^cDetermined by HPLC analysis.

Table 3. Screen of Solvents

P	MB			F、PMB
		L2-Sc(OT (1 : 1, 10 mo	f) ₃ pl%)	
N/N/	T NESI	solvent, 20	r∘c - ∽	Υ ^Λ Ν΄
н		Na ₂ CO ₃ (120	mol%)	11
1aa				2aa
entry ^a	solvent	time (h)	yield ^{b} (%)	ee ^c (%)
1	CH_2Cl_2	20	84	87
2	CH ₃ OH	20	6	22
3	Et ₂ O	20	28	73
4	toluene	20	68	80
5	EtOAc	20	98	85
6	THF	20	92	85
7	Cl ₃ CCH ₃	20	95	85
8	CH ₂ ClCH ₂ Cl	20	85	87
9	CHCl ₃	20	90	95
10^d	CHCl ₃	48	86	97
$11^{d,e}$	CHCl ₃	48	95	97
12^{d-f}	CHCl ₃	72	96	97

^aUnless otherwise noted, all reactions were performed with L2-Sc(OTf)₃ (1/1, 10 mol %), Na₂CO₃ (0.12 mmol), 1aa (0.1 mmol), and NFSI (0.12 mmol) in solvent (0.5 mL) under N2 at 20 °C for 20 h. ^bIsolated yield. ^cDetermined by HPLC analysis. ^dAt 0 °C. ^eIn CHCl₃ (0.25 mL). ^f5 mol % catalyst loading.

yields, 96-99% ee's; Table 4, entries 1-14). Remarkably, variation of the C3-substituent to thienylmethyl, pyridylmethyl, or naphthylmethyl was satisfied to deliver the desired products in 84–90% yields with 91–99% ee's (Table 4, entries 15–18). The 3-alkyl-2-oxindoles were also tolerated for this reaction

	Table 4.	Substrate	Scope of	the Catal	vtic Asym	nmetric Fluc	orination of	Unprotected	3-Substituted	Oxindole
--	----------	-----------	----------	-----------	-----------	--------------	--------------	-------------	---------------	----------

	R^2	L (*	_2 -Sc(OTf) ₃ R ²	F R ¹	
) + NFSI Na ₂ 0	CO ₃ , CHCl ₃ , 0 °C		
	1	5 ² 01		2aa-2bb	
entry ^a	1aa-1ba, $R^2 = H; 1bb,$ R^1	r ² = Cl time (days)	product	yield ^{b} (%)	<i>ee^c</i> (%)
1	4-MeOC ₆ H ₄ CH ₂	3	2aa	96	97
2	Bn	3	2ab	95	99
3	2-MeC ₆ H ₄ CH ₂	2	2ac	87	99
4	$3-MeC_6H_4CH_2$	3	2ad	96	96
5	4-MeC ₆ H ₄ CH ₂	3	2ae	96	96
6	2-ClC ₆ H ₄ CH ₂	2	2af	82	98
7	3-ClC ₆ H ₄ CH ₂	2	2ag	84	97
8	4-ClC ₆ H ₄ CH ₂	3	2ah	98	98
9	$4-FC_6H_4CH_2$	2	2ai	80	97
10	$4-BrC_6H_4CH_2$	3	2aj	92	96
11	$3-NO_2C_6H_4CH_2$	3	2ak	98	96
12	$4\text{-}NO_2C_6H_4CH_2$	3	2al	94	97
13	2,4-Cl ₂ C ₆ H ₃ CH ₂	2	2am	85	97
14		2	2an	91	97
15 ^d	S S S S S S S S S S S S S S S S S S S	3	2ao	90	97 (<i>R</i>)
16	N SSE	2	2ap	84	91
17	1-Naphthylmethyl	2	2aq	90	99
18	2-Naphthylmethyl	2	2ar	88	97
19 ^e	Me	2	2as	80	90
20 ^{<i>e.f.</i>}	Et	2	2at	87	92
21 ^{<i>e</i>,<i>f</i>}	<i>n</i> -Pr	2	2au	83	93
22 ^{<i>e</i>,<i>f</i>}	<i>n</i> -Bu	2	2av	82	93
23 ^{<i>e.f.</i>}	<i>i</i> -Bu	2	2aw	85	93
24 ^{<i>e.f</i>}	3-Ethylbutyl	2	2ax	87	90
25 ^e	Allyl	2	2ay	81	95
26 ^{<i>g.h</i>}	Ph	3	2az	85	89 (<i>R</i>)
27 ^g	4-ClC ₆ H ₄	3	2ba	89	89
28 ^g	Ph	2	2bb	98	93

^{*a*}Unless otherwise noted, the reactions were performed with **1** (0.1 mmol), **L2**-Sc(III) complex (1/1, 5 mol %) and Na₂CO₃ (0.12 mmol, 12.7 mg), NFSI (0.12 mmol, 37.8 mg) in CHCl₃ (0.25 mL) at 0 °C for the indicated time. ^{*b*}Isolated yield. ^{*c*}Determined by HPLC analysis (see Supporting Information for details). ^{*d*}The absolute configuration of **2ao** was *R* as determined by X-ray analysis. ^{*c*}In 0.5 mL of CHCl₃ and at 20 °C. ^{*f*}10 mol % catalyst loading. ^{*g*}In 2.0 mL of CHCl₃ at -20 °C with 10 mol % of L3-Sc(III) complex (1/1). ^{*h*}The absolute configuration of **2az** was *R* determined by comparison with literature.

(80–87% yields, 90–93% ee's; Table 4, entries 19–24). Moreover, oxindole with an unsaturated allyl group at the C3 position was compatible with this method, giving a moderate yield with 95% ee (Table 4, entry 25). By the use of N_rN' -dioxide L3 instead of L2,¹⁴ 3-aryl-2-oxindoles were also suitable substrates for this reaction (85–98% yields, 89–93% ee's; Table 4, entries 26–28).

Encouraged by these results, we next applied this method to synthesize Maxipost. Excitingly, the desired Maxipost **2bc** was achieved in 81% yield with 96% ee (Scheme 2).¹⁵ The absolute configuration of Maxipost was determined to be *S* by comparing the optical rotation with the literature value.^{5a} Without introduction and removal of protecting groups, this direct synthesis approach is atom-economical and efficient.

Scheme 2. One-Step Synthesis of Optically Active Maxipost

To show the synthetic utility of the catalyst system, fluorination of oxindole **1aa** was expanded to a gram scale. The desired 3-fluorooxindole **2aa** was obtained in 93% yield with 97% ee (Scheme 3).

Scheme 3. Asymmetric Fluorination of Oxindole 1aa on a Gram Scale

Control experiments were performed to verify the specific effect of the base on the fluorination (Scheme 4). No reaction

was observed without a base. Also a catalytic amount of Na_2CO_3 exhibited low reactivity. These results indicated that base accelerated the enolization of oxindole and the formation of sodium dibenzenesulfonimide was beneficial to the equilibrium toward the fluorinated product. When 200 mol % of Na_2CO_3 was added, the product **2aa** was obtained with lower ee, possibly due to the background reaction promoted by excess Na_2CO_3 .¹⁶

In light of the X-ray structure of the N,N'-dioxide-Sc(III) complex¹⁷ and the absolute configurations of the product **2ao**¹⁸ and **2az**, a catalytic model for the fluorination of the 3-substituted oxindole was proposed. As shown in Figure 2, the oxophilic metal Sc(III)¹⁹ coordinates with four oxygens of the N,N'-dioxide ligand, oxygen of the enolized oxindole and one sulfonic oxygen of the NFSI. The *Si* face of the enolized oxindole was shielded by the rear 2,6-diisopropylphenyl group. Therefore, *Re*-face attack at the fluorine of NFSI yields the corresponding *R*-configured product **2ao**.

CONCLUSIONS

In summary, we have developed a highly enantioselective fluorination of N-unprotected 3-substituted 2-oxindoles in the

Article

Figure 2. Proposed catalytic model and the X-ray crystallographic structure of 2ao.

presence of a chiral Sc(III)-N,N'-dioxide complex and Na₂CO₃. A variety of useful N–H-free 3-fluorooxindole derivatives could be obtained in good yields (up to 98%) with excellent enantioselectivities (up to 99% ee) under mild reaction conditions. Optically active MaxiPost was directly synthetized in one step. Further application of this catalyst system to other reactions of the unprotected 3-substituted oxindoles is in progress.

EXPERIMENTAL SECTION

General Remarks. Reactions were carried out using commercial available reagents in overdried apparatus. CHCl₃ was directly distilled before use. Enantiomeric excesses (ee) were determined by HPLC analysis using the corresponding commercial chiral column as stated in the experimental procedures at 23 °C with UV detection at 254 nm. Optical rotations were reported as follows: $[\alpha]^{25}_{D}$ (*c* in g/100 mL, solvent). ¹H NMR spectra were recorded on commercial instruments (400 MHz). ¹³C NMR spectra was collected on commercial instruments (100 MHz) with complete proton decoupling. ¹⁹F NMR was measured at 376 MHz; HRMS was recorded on a commercial apparatus (ESI Source). The *N*,*N'*-dioxide ligands L1–L6 were synthesized by the same procedure in the literature.²⁰

General Procedure for the Catalytic Asymmetric Fluorination Reaction. A dry reaction tube was charged with $Sc(OTf)_3$ (2.5 mg, 5 mol %), L2 (3.3 mg, 5 mol %), and 1 (0.1 mmol) under an N_2 atmosphere. Then, CHCl₃ (0.25 mL) was added and the mixture was stirred at 35 °C for 0.5 h. Finally, NFSI (0.12 mmol, 37.8 mg) and Na_2CO_3 (0.12 mmol, 12.7 mg) were added with stirring at the indicated temperature. The reaction mixture was stirred at the indicated temperature for 2–3 days. The residue was purified by flash chromatography (eluent CH₂Cl₂, then petroleum ether/AcOEt 4/1) on silica gel to afford the products. The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC).

3-Fluoro-3-(4-methoxybenzyl)indolin-2-one (**2aa**): yield 26.0 mg, 96%; light yellow oil; $[\alpha]^{25}_{\rm D} = -31.9^{\circ}$ (*c* 0.47, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) $t_{\rm r}$ (major) = 11.78 min, $t_{\rm r}$ (minor) = 9.68 min, ee = 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.25–7.15 (m, 1H), 6.97– 6.85 (m, 4H), 6.73 (d, *J* = 7.7 Hz, 1H), 6.66 (d, *J* = 8.3 Hz, 2H), 3.68 (s, 3H), 3.50–3.37 (m, 1H), 3.09 (dd, *J* = 22.6, 13.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (d, *J* = 21.0 Hz), 157.7, 140.0 (d, *J* = 5.6 Hz), 130.6, 130.0 (d, *J* = 2.8 Hz), 124.8, 124.6 (d, *J* = 19.3 Hz), 123.4 (d, *J* = 7.2 Hz), 121.8 (d, *J* = 2.4 Hz), 112.5, 109.6, 92.5 (d, *J* = 190.6 Hz), 54.1, 39.2 (d, *J* = 27.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.8 (dd, *J* = 22.8, 10.6 Hz, 1F); HRMS (ESI) calcd for C₁₆H₁₄FNO₂ ([M] + Na⁺) 294.0906, found 294.0910.

3-Benzyl-3-fluoroindolin-2-one (**2ab**): yield 22.9 mg, 95%; white solid, mp 105–107 °C; $[\alpha]^{25}_{D} = -52.3^{\circ}$ (*c* 0.26, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 14.12 min, t_r (minor) = 12.60 min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.35–7.14 (m, 4H), 7.13–7.04 (m, 2H), 7.03–6.91 (m, 2H), 6.80 (d, J = 7.8 Hz,1H), 3.64–3.46

(m, 1H), 3.22 (dd, J = 22.7, 13.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.9 (d, J = 21.0 Hz), 141.0 (d, J = 5.7 Hz), 132.5 (d, J = 6.9 Hz), 131.1 (d, J = 2.9 Hz), 130.7, 128.2, 127.3, 125.9, 125.5 (d, J = 19.1 Hz), 122.9 (d, J = 2.5 Hz), 110.6, 93.5 (d, J = 191.0 Hz), 41.1 (d, J = 27.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.2 (dd, J = 22.5, 10.6 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₂FNO ([M] + Na⁺) 264.0801, found 264.0801.

3-*Fluoro-3-(2-methylbenzyl)indolin-2-one* (**2ac**): yield 22.2 mg, 87%; colorless oil; $[\alpha]^{25}_{D} = -25.3^{\circ}$ (*c* 0.45, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 254 nm) *t*_t(major) = 14.20 min, *t*_t(minor) = 12.57 min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 7.35–7.27 (m, 1H), 7.23 (t, *J* = 6.5 Hz, 2H), 7.17 (t, *J* = 6.1 Hz, 2H), 6.97–6.87 (m, 2H), 6.68 (d, *J* = 7.4 Hz, 1H), 3.64 (t, *J* = 13.9 Hz, 1H), 3.18 (dd, *J* = 31.6, 14.5 Hz, 1H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8 (d, *J* = 21.2 Hz), 140.8 (d, *J* = 5.9 Hz), 137.8, 131.6 (d, *J* = 1.3 Hz), 131.5 (d, *J* = 2.3 Hz), 131.0 (d, *J* = 2.6 Hz), 130.4, 127.6, 125.9 (d, *J* = 29.9 Hz), 125.6 (d, *J* = 19.7 Hz), 122.9 (d, *J* = 2.4 Hz), 110.7, 93.5 (d, *J* = 192.3 Hz), 37.6 (d, *J* = 27.2 Hz), 19.9 (d, *J* = 1.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.2 (dd, *J* = 22.7, 10.7 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₆H₁₄FNO ([M] + Na⁺) 278.0957, found 278.0965.

3-*Fluoro-3-(3-methylbenzyl)indolin-2-one* (**2ad**): yield 24.5 mg, 96%; white solid, mp 96–98 °C; $[\alpha]^{25}_{D} = -38.8^{\circ}$ (*c* 0.40, CH₂Cl₂); HPLC (Chiralcel ID, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) $t_{\rm r}$ (major) = 7.44 min, $t_{\rm r}$ (minor) = 6.74 min, ee = 96%; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.35–7.25 (m, 1H), 7.15–6.98 (m, 4H), 6.95 (s, 1H), 6.90 (d, *J* = 7.3 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 3.65–3.50 (m, 1H), 3.19 (dd, *J* = 23.4, 13.5 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1 (d, *J* = 21.0 Hz), 141.0 (d, *J* = 5.7 Hz), 137.8, 132.4 (d, *J* = 6.4 Hz), 131.5, 131.1 (d, *J* = 2.8 Hz), 128.0 (d, *J* = 4.4 Hz), 127.7, 126.0, 125.6 (d, *J* = 19.2 Hz), 122.9 (d, *J* = 2.5 Hz), 110.6, 93.5 (d, *J* = 191.0 Hz), 41.0 (d, *J* = 27.7 Hz), 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –155.3 (dd, *J* = 23.0, 10.8 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₆H₁₄FNO ([M] + Na⁺) 278.0957, found 278.0963.

3-*Fluoro-3-*(4-*methylbenzyl*)*indolin-2-one* (**2ae**): yield 24.5 mg, 96%; white solid, mp 108–110 °C; $[\alpha]^{25}_{D} = -32.9^{\circ}$ (*c* 0.49, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) *t*_r(major) = 8.22 min, *t*_r(minor) = 7.03 min, ee = 96%; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.25–7.10 (m, 1H), 7.00–6.85 (m, 6H), 6.73 (d, *J* = 7.7 Hz, 1H), 3.61–3.39 (m, 1H), 3.11 (dd, *J* = 22.6, 13.5 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1 (d, *J* = 20.8 Hz), 141.1 (d, *J* = 5.6 Hz), 136.9, 131.1 (d, *J* = 2.8 Hz), 130.5, 129.3 (d, *J* = 6.9 Hz), 128.9, 125.9, 125.6 (d, *J* = 19.0 Hz), 122.9 (d, *J* = 2.4 Hz), 110.6, 93.5 (d, *J* = 190.5 Hz), 40.7 (d, *J* = 27.7 Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –155.2 (dd, *J* = 22.3, 10.5 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₆H₁₄FNO ([M] + Na⁺) 278.0957, found 278.0962.

3-(2-Chlorobenzyl)-3-fluoroindolin-2-one (**2af**): yield 22.6 mg, 82%; yellow solid, mp 118–120 °C; $[\alpha]^{25}{}_{\rm D} = -2.4^{\circ}$ (*c* 0.45, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) *t*_r(major) = 9.89 min, *t*_r(minor) = 8.50 min, ee = 98%; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.53–7.45 (m, 1H), 7.37–7.20 (m, 4H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.83 (d, *J* = 7.4 Hz, 1H), 3.73 (t, *J* = 14.8 Hz, 1H), 3.51 (dd, *J* = 27.6, 14.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1 (d, *J* = 21.0 Hz), 140.7 (d, *J* = 5.9 Hz), 135.3 (s), 132.5 (d, *J* = 1.7 Hz), 131.2 (d, *J* = 3.1 Hz), 131.2 (d, *J* = 2.5 Hz), 110.6, 92.9 (d, *J* = 192.2 Hz), 37.4 (d, *J* = 27.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –157.2 (dd, *J* = 26.7, 15.0 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₁Cl^{34.9689}FNO ([M] + Na⁺) 298.0411, found 298.0415.

3-(3-Chlorobenzyl)-3-fluoroindolin-2-one (**2ag**): yield 23.2 mg, 84%; yellow oil; $[\alpha]^{25}_{D} = -32.5^{\circ}$ (*c* 0.46, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 16.37 min, t_r (minor) = 14.97 min, ee = 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.27–7.22 (m, 1H), 7.19–7.13 (m, 2H), 7.08–6.94 (m, 3H), 6.87 (d, *J* = 7.8 Hz, 1H), 3.62–3.51 (m, 1H), 3.20 (dd, *J* = 23.0, 13.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7 (d, J = 20.7 Hz), 141.0 (d, J = 5.7 Hz), 134.6 (d, J = 6.4 Hz), 134.0, 131.4 (d, J = 2.8 Hz), 130.7, 129. 5, 128.9, 127.7, 125.8, 125.1 (d, J = 19.1 Hz), 123.1 (d, J = 2.5 Hz), 110.8, 93.1 (d, J = 191.8 Hz), 40.7 (d, J = 28.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = -155.7 (dd, J = 22.7, 10.9 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₁Cl^{34.9689}FNO ([M] + Na⁺) 298.0411, found 298.0418.

3-(4-Chlorobenzyl)-3-fluoroindolin-2-one (**2ah**): yield 27.0 mg, 98%; white solid, mp 138–140 °C; $[\alpha]^{25}_{D} = -28.6^{\circ}$ (*c* 0.39, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/ min, λ 254 nm) *t*_r(major) = 8.94 min, *t*_r(minor) = 7.53 min, ee = 98%; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.27–7.17 (m, 1H), 7.14–7.07 (m, 2H), 7.04–6.85 (m, 4H), 6.74 (d, *J* = 7.8 Hz, 1H), 3.50–3.40 (m, 1H), 3.14 (dd, *J* = 21.8, 13.5 Hz,1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5 (d, *J* = 21.0 Hz), 141.0 (d, *J* = 5.6 Hz), 133.4, 132.0, 131.3 (d, *J* = 2.8 Hz), 131.0 (d, *J* = 7.1 Hz), 128.4, 125.7, 125.2 (d, *J* = 19.1 Hz), 123.1 (d, *J* = 2.5 Hz), 110.7, 93.2 (d, *J* = 191.5 Hz), 40.5 (d, *J* = 28.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.3 (dd, *J* = 21.6, 10.3 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₁Cl^{34.9689}FNO ([M] + Na⁺) 298.0411, found 298.0417.

3-*Fluoro-3*-(4-fluorobenzyl)indolin-2-one (**2a**i): yield 20.7 mg, 80%; white solid, mp 115–117 °C; $[\alpha]^{25}_{\rm D} = -39.2^{\circ}$ (*c* 0.43, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) $t_{\rm r}$ (major) = 9.32 min, $t_{\rm r}$ (minor) = 8.01 min, ee = 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.24–7.16 (m, 1H), 7.06–6.89 (m, 4H), 6.82 (t, *J* = 8.6 Hz, 2H), 6.74 (d, *J* = 7.8 Hz, 1H), 3.41–3.51 (m, 1H), 3.13 (dd, *J* = 22.1, 13.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8 (d, *J* = 20.8 Hz), 163.4, 161.0, 141.0 (d, *J* = 5.7 Hz), 132.2 (d, *J* = 7.5 Hz), 131.3 (d, *J* = 2.8 Hz), 128.2 (dd, *J* = 7.1, 3.3 Hz), 125.7, 125.3 (d, *J* = 19.2 Hz), 123.0 (d, *J* = 2.5 Hz), 115.1 (d, *J* = 21.3 Hz), 110.7, 93.3 (d, *J* = 190.1 Hz), 40.3 (d, *J* = 28.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –115.0 to –115.3 (m, 1F), –155.5 (dd, *J* = 21.7, 10.3 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₁F₂NO ([M] + Na⁺) 282.0706, found 282.0706.

3-(4-Bromobenzyl)-3-fluoroindolin-2-one (**2a***j*): yield 29.4 mg, 92%; white solid, mp 116–118 °C; $[\alpha]^{25}_{D} = -21.6^{\circ}$ (*c* 0.59, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/ min, λ 254 nm) *t*_r(major) = 9.35 min, *t*_r(minor) = 8.03 min, ee = 96%; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.40–7.25 (m, 3H), 7.14–6.88 (m, 4H), 6.83 (d, *J* = 7.7 Hz, 1H), 3.56–3.43 (m, 1H), 3.19 (dd, *J* = 21.9, 13.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7 (d, *J* = 20.6 Hz), 141.0 (d, *J* = 5.6 Hz), 132.3, 131.5 (d, *J* = 7.2 Hz), 131.4, 125.7, 125.2 (d, *J* = 19.1 Hz), 123.1, 121.6, 110.8, 93.1 (d, *J* = 191.1 Hz), 40.5 (d, *J* = 28.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.2 (dd, *J* = 21.5, 10.3 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₁^{78.9183}BrFNO ([M] + H⁺) 320.0086, found 320.0092.

3-*Fluoro-3-(3-nitrobenzyl)indolin-2-one* (**2ak**): yield 28.0 mg, 98%; white solid, mp 79–81 °C; $[\alpha]^{25}_{D} = -23.0^{\circ}$ (*c* 0.57, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 17.69 min, t_r (minor) = 16.44 min, ee = 96%; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.12 (d, *J* = 7.6, 1H), 7.97 (s, 1H), 7.60–7.37 (m, 2H), 7.33 –7.27 (m, 1H), 7.06–7.01 (m, 2H), 6.85 (d, *J* = 7.6 Hz, 1H), 3.64 (t, *J* = 12.6 Hz, 1H), 3.36 (dd, *J* = 21.4, 13.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.3 (d, *J* = 20.8 Hz), 148.0, 140.9 (d, *J* = 5.6 Hz), 136.9, 134.7 (d, *J* = 6.5 Hz), 131.7 (d, *J* = 2.7 Hz), 129.2, 125.5 (d, *J* = 2.6 Hz), 124.8 (d, *J* = 19.1 Hz), 123.3 (d, *J* = 2.4 Hz), 122.6, 111.0, 92.8 (d, *J* = 192.6 Hz), 40.7 (d, *J* = 28.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –156.1 (dd, *J* = 21.1, 11.5 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₁FN₂O₃ ([M] + Na⁺) 309.0651, found 309.0652.

3-Fluoro-3-(4-*nitrobenzyl*)*indolin-2-one* (**2a***l*): yield 26.9 mg, 94%; yellow solid, mp 152–154 °C; $[\alpha]^{25}_{D} = -10.8^{\circ}$ (*c* 0.54, CH₂Cl₂); HPLC (Chiralcel OJ-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/ min, λ 254 nm) t_r (major) = 43.21 min, t_r (minor) = 33.43 min, ee = 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.33–7.27 (m, 3H), 7.07–7.01 (m, 2H), 6.83 (d, *J* = 7.8 Hz, 1H), 3.65 (t, *J* = 12.2 Hz, 1H), 3.36 (dd, *J* = 21.3, 13.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.0 (d, *J* = 20.8 Hz), 147.4, 140.8 (d, *J* = 5.6 Hz), 140.3 (d, *J* = 6.5 Hz), 131.7 (d, *J* = 2.7 Hz), 131.6, 125.6, 124.8 (d, *J* = 19.3 Hz), 123.4, 123.3 (d, *J* = 2.3 Hz), 110.9, 92.7 (d, *J* =

193.0 Hz), 40.9 (d, J = 28.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.0 (dd, J = 21.0, 10.9 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₁FN₂O₃ ([M] + Na⁺) 309.0651, found 309.0649.

3-(2,4-Dichlorobenzyl)-3-fluoroindolin-2-one (2am): yield 26.4 mg, 85%; white solid, mp 119–121 °C; $[\alpha]^{25}_{D} = +19.4^{\circ}$ (*c* 0.53, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) *t*_r(major) = 9.83 min, *t*_r(minor) = 7.42 min, ee = 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 7.29–7.19 (m, 2H), 7.19–7.15 (m, 1H), 6.90 (t, *J* = 7.5 Hz, 1H), 6.80 (t, *J* = 7.6 Hz, 2H), 3.58 (t, *J* = 15.0 Hz, 1H), 3.36 (dd, *J* = 26.6, 14.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.9 (d, *J* = 21.5 Hz), 140.7 (d, *J* = 5.8 Hz), 136.0, 134.1, 133.3 (d, *J* = 1.7 Hz), 131.4 (d, *J* = 2.7 Hz), 129.8 (d, *J* = 2.9 Hz), 129.3, 127.2, 125.7, 125.1 (d, *J* = 19.2 Hz), 123.2, 110.8, 92.6 (d, *J* = 192.5 Hz), 37.1 (d, *J* = 27.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –157.32 (dd, *J* = 26.2, 15.4 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₅H₁₀^{34.9689}Cl₂FNO ([M] + Na⁺) 332.0021, found 332.0024.

3-(*Benzo*[*d*][1,3]*dioxol-5-ylmethyl*)-3-fluoroindolin-2-one (**2an**): yield 25.9 mg, 91%; white solid, mp 132–134 °C; $[\alpha]^{25}_{D} = -23.0^{\circ}$ (*c* 0.52, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 13.76 min, t_r (minor) = 12.17 min, ee = 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.36–7.22 (m, 1H), 7.09–6.96 (m, 2H), 6.84 (d, *J* = 7.8 Hz, 1H), 6.72–6.57 (m, 2H), 6.55–6.49 (m, 1H), 5.90 (s, 2H), 3.53–3.43 (m, 1H), 3.14 (dd, *J* = 22.6, 13.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1 (d, *J* = 20.9 Hz), 147.4, 146.8, 141.1 (d, *J* = 5.7 Hz), 131.2 (d, *J* = 2.9 Hz), 126.1 (d, *J* = 7.0 Hz), 125.8, 125.5 (d, *J* = 19.1 Hz), 124.0, 123.0(d, *J* = 2.5 Hz), 110.8 (d, *J* = 15.9 Hz), 108.0, 101.0, 93.5 (d, *J* = 190.8 Hz), 40.7 (d, *J* = 27.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –154.9 (dd, *J* = 21.8, 10.4 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₆H₁₂FNO₃ ([M] + Na⁺) 308.0699, found 308.0705.

(*R*)-3-*Fluoro-3-(thiophen-2-ylmethyl)indolin-2-one* (**2ao**): yield 22.2 mg, 90%; white solid, mp 152–154 °C; $[\alpha]^{25}_{D} = +0.9^{\circ}$ (*c* 0.35, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 17.48 min, t_r (minor) = 15.79 min, ee = 98%; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.24–6.96 (m, 3H), 6.96–6.53 (m, 3H), 3.74 (dd, *J* = 14.5, 9.6 Hz, 1H), 3.53 (dd, *J* = 21.0, 14.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (d, *J* = 20.8 Hz), 141.3 (d, *J* = 5.6 Hz), 133.7 (d, *J* = 8.4 Hz), 131.5 (d, *J* = 2.9 Hz), 128.4, 126.8, 125.6 (d, *J* = 20.9 Hz), 125.2 (d, *J* = 18.9 Hz), 123.2 (d, *J* = 2.5 Hz), 110.7, 92.7 (d, *J* = 190.8 Hz), 35.3 (d, *J* = 30.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –154.2 to –154.7 (m, 1F); HRMS (ESI-TOF) calcd for C₁₃H₁₀FNOS ([M] + Na⁺) 270.0365, found 270.0371.

3-*Fluoro-3-(pyridin-2-ylmethyl)indolin-2-one* (**2ap**): yield 20.3 mg, 84%; yellow solid, mp 121–123 °C; $[\alpha]^{25}_{\rm D} = -2.2^{\circ}$ (*c* 0.41, CH₂Cl₂); HPLC (Chiralcel OJ-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 13.58 min, t_r (minor) = 12.28 min, ee = 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.42 (d, *J* = 4.3, 1H), 7.61–7.54 (m, 1H), 7.30–7.25 (m, 1H), 7.24–7.18 (m, 1H), 7.17–7.06 (m, 1H), 7.05–6.86 (m, 2H), 6.78 (d, *J* = 7.8 Hz, 1H), 3.74 (t, *J* = 13.2 Hz, 1H), 3.59 (dd, *J* = 20.3, 13.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8 (d, *J* = 20.8 Hz), 153.9 (d, *J* = 8.0 Hz), 149.1, 141.4 (d, *J* = 5.8 Hz), 136.4, 131.2 (d, *J* = 3.0 Hz), 125.7, 125.3 (d, *J* = 18.6 Hz), 124.9 (d, *J* = 1.9 Hz), 122.8 (d, *J* = 2.7 Hz), 122.3, 110.6, 92.9 (d, *J* = 188.7 Hz), 43.0 (d, *J* = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –154.2 (dd, *J* = 20.0, 12.8 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₄H₁₁FN₂O ([M] + Na⁺) 265.0753, found 265.0749.

3-Fluoro-3-(naphthalen-1-ylmethyl)indolin-2-one (**2aq**): yield 26.2 mg, 90%; yellow solid, mp 132–134 °C; $[\alpha]^{25}_{D} = -86.5^{\circ}$ (c 0.52, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 12.19 min, t_r (minor) = 11.02 min, ee = 99%; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.90–7.79 (m, 2H), 7.56–7.17 (m, 5H), 6.95–6.74 (m, 2H), 6.67 (d, *J* = 7.4 Hz, 1H), 4.16–4.05 (m, 1H), 3.65 (dd, *J* = 28.8, 14.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.7 (d, *J* = 20.9 Hz), 140.8 (d, *J* = 5.8 Hz), 133.8, 132.9, 131.0 (d, *J* = 2.7 Hz), 129.7, 129.3 (d, *J* = 3.2 Hz), 128.4 (d, *J* = 21.3 Hz), 126.4, 125.9, 125.6, 125.4, 125.0, 124.5 (d, *J* = 2.5 Hz), 122.7 (d, *J* = 2.4 Hz), 110.7, 93.60 (d, *J* = 192.7 Hz), 37.3 (d, *J* = 27.7 Hz); ¹⁹F NMR (376 MHz,

CDCl₃) δ –157.0 (dd, *J* = 28.4, 11.9 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₉H₁₄FNO ([M] + Na⁺) 314.0957, found 314.0952.

3-*Fluoro-3-(naphthalen-2-ylmethyl)indolin-2-one* (2*ar*): yield 25.6 mg, 88%; white solid, mp 112–114 °C; $[α]^{25}_{D} = -48.0^{\circ}$ (*c* 0.51, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 10.64 min, t_r (minor) = 8.88 min, ee = 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.85–7.73 (m, 1H), 7.68 (m,2 H), 7.55 (s, 1H), 7.45–7.40 (m, 2H), 7.31–7.13 (m, 2H), 6.98 (m, 2H), 6.76 (d, *J* = 7.8 Hz, 1H), 3.75–3.65 (m, 1H), 3.37 (dd, *J* = 22.6, 13.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.9 (d, *J* = 20.9 Hz), 141.0 (d, *J* = 5.7 Hz), 133.2, 132.5, 131.2 (d, *J* = 2.8 Hz), 130.1 (d, *J* = 6.8 Hz), 129.7, 128.6, 127.8 (d, *J* = 8.0 Hz), 127.6, 126.0, 125.9 (d, *J* = 4.9 Hz), 125.5 (d, *J* = 19.2 Hz), 123.0 (d, *J* = 2.5 Hz), 110.7, 93.5 (d, *J* = 191.2 Hz), 41.2 (d, *J* = 27.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –154.8 (dd, *J* = 22.2, 10.5 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₉H₁₄FNO ([M] + Na⁺) 314.0957, found 314.0953.

3-Fluoro-3-methylindolin-2-one (**2as**): yield 13.2 mg, 80%; white solid, mp 128–130 °C; $[\alpha]^{25}_{D} = -14.3^{\circ}$ (c 0.27, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) $t_{\rm r}$ (major) = 7.93 min, $t_{\rm r}$ (minor) = 6.84 min, ee = 90%; ¹H NMR (400 MHz, CDCl₃) δ = 8.80 (s, 1H), 7.42 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 1.84–1.74 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 175.7 (d, J = 21.7 Hz), 140.7 (d, J = 5.1 Hz), 131.2 (d, J = 2.9 Hz), 127.6 (d, J = 18.7 Hz), 124.5, 123.4 (d, J = 2.5 Hz), 110.9, 91.4 (d, J = 184.8 Hz), 21.3 (d, J = 29.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –148.7 to –161.9 (m, 1F); HRMS (ESI-TOF) calcd for C₉H₈FNO ([M] + Na⁺) 188.0488, found 188.0491.

3-*Ethyl*-3-fluoroindolin-2-one (**2at**): yield 15.6 mg, 87%; yellow oil; [*α*]²⁵_D = +13.5° (*c* 0.23, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) $t_{\rm r}$ (major) = 6.20 min, $t_{\rm r}$ (minor) = 7.61 min, ee = 92%; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.32 (d, *J* = 7.4 Hz, 1H), 7.30–7.22 (m, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 2.19–2.07 (m, 2H), 0.82 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.5 (d, *J* = 21.3 Hz), 141.3 (d, *J* = 5.6 Hz), 131.1 (d, *J* = 2.9 Hz), 126.2 (d, *J* = 19.0 Hz), 124.9, 123.3 (d, *J* = 2.6 Hz), 110.7, 94.4 (d, *J* = 187.3 Hz), 28.2 (d, *J* = 27.7 Hz), 7.0 (d, *J* = 8.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –157.2 (t, *J* = 14.1 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₀H₁₀FNO ([M] + Na⁺) 202.0644, found 202.0648.

3-*Fluoro-3-propylindolin-2-one (2au):* yield 16.0 mg, 83%; white solid, mp 88–90 °C; $[\alpha]^{25}_{D}$ = +25.8° (*c* 0.25, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 7.43 min, t_r (minor) = 6.23 min, ee = 93%; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 7.39 (d, *J* = 7.4 Hz, 1H), 7.36–7.29 (m, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 2.25–2.04 (m, 2H), 1.41–1.17 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.7 (d, *J* = 21.3 Hz), 141.2 (d, *J* = 5.7 Hz), 131.1 (d, *J* = 2.9 Hz), 126.5 (d, *J* = 18.9 Hz), 124.9, 123.3 (d, *J* = 2.6 Hz), 110.8, 93. Nine (d, *J* = 186.9 Hz), 37.1 (d, *J* = 26.4 Hz), 16.1 (d, *J* = 7.3 Hz), 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –155.6 (t, *J* = 14.4 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₁H₁₂FNO ([M] + Na⁺) 216.0801, found 216.0802.

3-Butyl-3-fluoroindolin-2-one (**2av**): yield 17.0 mg, 82%; white solid, mp 83–85 °C; $[\alpha]^{25}_{\rm D}$ = +16.2° (*c* 0.30, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ 254 nm) $t_{\rm r}$ (major) = 5.82 min, $t_{\rm r}$ (minor) = 6.66 min, ee = 93%; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.57–7.28 (m, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 2.36–1.87 (m, 1H), 1.44–1.24 (m, 1H), 1.22–1.09 (m, 1H), 0.86 (t, *J* = 7.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.6 (d, *J* = 21.4 Hz), 141.2 (d, *J* = 5.7 Hz), 131.1 (d, *J* = 2.9 Hz), 126.5 (d, *J* = 18.9 Hz), 124.9, 123.3 (d, *J* = 2.5 Hz), 110.7, 93.9 (d, *J* = 187.0 Hz), 34.8 (d, *J* = 26.6 Hz), 24.6 (d, *J* = 6.8 Hz), 22.7, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –155.5 (t, *J* = 14.3 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₂H₁₄FNO ([M] + Na⁺) 230.0957, found 230.0961.

3-Fluoro-3-isobutylindolin-2-one (2aw): yield 17.6 mg, 85%; white solid, mp 84–86 °C; $[\alpha]^{25}_{\rm D}$ = + 31.2° (c 0.25, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ 254

nm) t_r (major) = 6.75 min, t_r (minor) = 5.96 min, ee = 93%; ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.39 (d, J = 7.3 Hz, 1H), 7.37 -7.29 (m, 1H), 7.10 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 2.14 (d, J = 6.6 Hz, 1H), 2.10 (d, J = 6.6 Hz, 1H), 1.75 -1.63 (m, 1H), 0.90 (d, J = 6.6 Hz, 3H), 0.85 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8 (d, J = 21.4 Hz), 141.2 (d, J = 5.7 Hz), 131.2 (d, J = 3.1 Hz), 126.5 (d, J = 18.6 Hz), 125.4, 123.2 (d, J = 2.7 Hz), 110.8, 94.0 (d, J = 184.8 Hz), 43.0 (d, J = 25.5 Hz), 23.8 (d, J = 6.6 Hz), 23.6 (d, J = 16.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -150.6 (t, J = 16.2 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₂H₁₄FNO ([M] + Na⁺) 230.0957, found 230.0956.

3-(2-Ethylbutyl)-3-fluoroindolin-2-one (**2ax**): yield 20.4 mg, 87%; colorless oil; $[\alpha]^{25}_{D} = +23.0^{\circ}$ (c 0.24, CH₂Cl₂); HPLC (Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 6.37 min, t_r (minor) = 7.41 min, ee = 90%; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.39 (d, *J* = 7.3 Hz, 1H), 7.36 -7.29 (m, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 2.28-1.94 (m, 2H), 1.36-1.20 (m, 5H), 0.81- 0.76 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8 (d, *J* = 21.5 Hz), 141.2 (d, *J* = 5.7 Hz), 131.1 (d, *J* = 3.0 Hz), 126.6 (d, *J* = 18.8 Hz), 125.3, 123.1 (d, *J* = 2.6 Hz), 110.8, 94.2 (d, *J* = 185.5 Hz), 38.0 (d, *J* = 25.6 Hz), 35.2 (d, *J* = 5.7 Hz), 25.8 (d, *J* = 15.5 Hz), 10.3 (d, *J* = 6.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -151.4 to -152.2 (m, 1F); HRMS (ESI-TOF) calcd for C₁₄H₁₈FNO ([M] + Na⁺) 258.1270, found 258.1271.

3-Allyl-3-fluoroindolin-2-one (**2ay**): yield 15.5 mg, 81%; white solid, mp 80–82 °C; $[\alpha]^{25}_{\rm D} = -22.9^{\circ}$ (*c* 0.31, CH₂Cl₂); HPLC (Chiralcel IA, hexane/*i*·PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) $t_{\rm r}$ (major) = 7.81 min, $t_{\rm r}$ (minor) = 6.60 min, ee = 95%; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.37–7.30 (m, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 5.69–5.59 (m, 1H), 5.19–5.13 (m, 2H), 3.09–2.93 (m, 1H), 2.87–2.77 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.9 (d, *J* = 21.0 Hz), 141.1 (d, *J* = 5.6 Hz), 131.2 (d, *J* = 2.9 Hz), 128.8 (d, *J* = 8.4 Hz), 125. Nine (d, *J* = 18.9 Hz), 39.4 (d, *J* = 28.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –156.9 (dd, *J* = 17.8, 11.9 Hz, 1F); HRMS (ESI-TOF) calcd for C₁₁H₁₀FNO ([M] + Na⁺) 214.0644, found 214.0642.

(*R*)-3-Fluoro-3-phenylindolin-2-one (**2az**): yield 19.3 mg, 85%; white solid, mp 137–139 °C; $[\alpha]^{25}_{D} = -136.7^{\circ}$ (*c* 0.35, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 8.20 min, t_r (minor) = 13.04 min, ee = 89%; the absolute configuration of the **2az** was determined to be *R* by comparing the value of optical rotation of *tert*-butyl 3-fluoro-2-oxo-3-phenylindoline-1-carboxylate with the reported value^{7a} ($[\alpha]^{25}_{D} = -71.7^{\circ}$ (*c* 0.75, CHCl₃), 89% ee; lit^{7a} $[\alpha]^{27}_{D} = -70.4^{\circ}$ (*c* 0.77, CHCl₃), 79% ee); ¹H NMR (400 MHz, CDCl₃) δ 9.56–9.36 (m, 1H), 7.46–7.34 (m, SH), 7.33–7.29 (m, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.4 (d, *J* = 23.8 Hz), 142.0 (d, *J* = 5.7 Hz), 135.8 (d, *J* = 27.0 Hz), 131.6 (d, *J* = 3.0 Hz), 129.3 (d, *J* = 1.4 Hz), 128.7, 127.4 (d, *J* = 18.1 Hz), 126.3 (d, *J* = 188.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –154.4 (s, 1F); HRMS (ESI-TOF) calcd for C₁₄H₁₀FNO ([M] + Na⁺) 250.0644, found 250.0643.

3⁻(4-*Chlorophenyl*)-3-*fluoroindolin-2-one* (**2ba**): yield 23.3 mg, 89%; white solid, mp 144–146 °C; $[\alpha]^{25}_{D} = -90.5^{\circ}$ (*c* 0.45, CH₂Cl₂); HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/ min, λ 254 nm) t_r (major) = 6.15 min, t_r (minor) = 10.37 min, ee = 89%; ¹H NMR (400 MHz, CDCl₃) δ 8.85–8.65 (m, 1H), 7.46–7.23 (m, 5H), 7.21 (d, *J* = 7.4 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.94–6.83 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4 (d, *J* = 18.7 Hz), 140.7 (d, *J* = 4.9 Hz), 134.5 (d, *J* = 2.1 Hz), 133.2 (d, *J* = 27.5 Hz), 130.8 (d, *J* = 3.1 Hz), 127.9, 126.3 (d, *J* = 6.3 Hz), 125.7 (d, *J* = 18.0 Hz), 125.4, 122.8 (d, *J* = 2.7 Hz), 110.1, 92.2 (d, *J* = 191.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –153.2 (s, 1F); HRMS (ESI-TOF) calcd for C₁₁₄H₉^{34.9689}CIFNO ([M] + Na⁺) 284.0254, found 284.0254.

5-Chloro-3-fluoro-3-phenylindolin-2-one (**2bb**): yield 25.6 mg, 98%; white solid, mp 156–158 °C; $[\alpha]^{25}_{D} = -178.3^{\circ}$ (*c* 0.51, CH₂Cl₂); HPLC (Chiralcel IC, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 6.54 min, t_r (minor) = 7.37 min, ee =

93%; ¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 7.53–7.23 (m, 6H), 7.19 (s, 1H), 6.82 (d, J = 8.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7 (d, J = 23.7 Hz), 140.2 (d, J = 5.6 Hz), 135.1 (d, J = 26.8 Hz), 131.6 (d, J = 2.9 Hz), 129.6 (d, J = 1.0 Hz), 129.1 (d, J = 3.1 Hz), 129.0, 128.8, 126.8, 125.5 (d, J = 6.5 Hz), 112.2, 93.5 (d, J = 190.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.1 (s, 1F); HRMS (ESI-TOF) calcd for C₁₄H₉^{34.9689}ClFNO ([M] + Na⁺) 284.0254, found 284.0256.

(S)-3-(5-Chloro-2-methoxyphenyl)-3-fluoro-6-(trifluoromethyl)indolin-2-one (MaxiPost 2bc). MaxiPost 2bc was purified by flash column chromatography (eluent pure CH₂Cl₂) to give a white solid: 81% yield, 29.3 mg; mp 196-198 °C; HPLC (Chiralcel OD-H, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, λ 254 nm) t_r (major) = 6.38 min, $t_r(\text{minor}) = 9.57$ min, ee = 96%; $[\alpha]^{25}_{D} = +134.1^{\circ}$ (c 0.59, MeOH), 96% ee (lit.^{5a} $[\alpha]^{28}_{D} = +168^{\circ} (c \ 0.132, MeOH)), >99\%$ ee, S enantiomer; by comparing the value of optical rotation with the reported value,^{5a} the absolute configuration of MaxiPost was determined to be S; ¹H NMR (400 MHz, CDCl₃) δ 8.9-8.45 (m, 1H), 7.73 (s, 1H), 7.28 (d, J = 8.7 Hz, 1H), 7.21–7.17 (m, 1H), 7.18– 7.04 (m, 2H), 6.70 (d, J = 8.7 Hz, 1H), 3.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4 (d, J = 20.1 Hz), 152.6 (d, J = 6.1 Hz), 141.6 (d, J = 5.5 Hz), 132.4 (d, J = 32.0 Hz), 129.3, 125.6 (d, J = 1.9 Hz),125.5, 125.4, 124.9 (d, J = 26.8 Hz), 124.5 (d, J = 1.7 Hz), 121.1, 119.2, 111.7, 106.1, 90.1 (d, J = 185.5 Hz), 55.0; ¹⁹F NMR (376 MHz, $CDCl_3$) δ -63.0 (d, J = 2.3 Hz, 3F), -159.5 (s, 1F).

ASSOCIATED CONTENT

Supporting Information

Text, figures, tables, and a CIF file giving crystallographic data for **2ao**, full optimization details, ¹H and ¹³C NMR spectra, and HPLC data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: xmfeng@scu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the National Natural Science Foundation of China (Nos. 21021001 and 20902060), the Ministry of Education (No. 20110181130014), and the National Basic Research Program of China (973 Program: 2010CB833300) for financial support. We also thank the State Key Laboratory of Biotherapy for HRMS analysis.

REFERENCES

(1) (a) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, U.K., 2006. (b) Nicoletti, M.; Bremer, M.; Kirsch, P.; O'Hagan, D. Chem. Commum. 2007, 5075. (c) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (e) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (f) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (g) Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, S, 637.

(2) (a) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119. (b) Muñiz, K. Angew. Chem., Int. Ed. 2001, 40, 1653.

(3) For selected examples of catalytic enantioselective fluorination, see: (a) Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359. (b) Hamashima, Y.; Yagi, K.; Takano, H.; Tamás, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. (c) Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. (d) Althaus, M.; Becker, C.; Togni, A.; Mezzetti, A. Organometallics 2007, 26, 5902. (e) Wang, X.; Lan, Q.; Shirakawa, S.; Maruoka, K. Chem. Commun. 2010, 46, 321. (f) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjærsgaard, A.; Jørgensen, K. A.

The Journal of Organic Chemistry

Angew. Chem., Int. Ed. 2005, 44, 3703. (g) Steiner, D. D.; Mase, N.;
Barbas, C. F., III Angew. Chem., Int. Ed. 2005, 44, 3706. (h) Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826.
(i) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.;
Kjærsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.
(j) Suzuki, T.; Hamashima, Y.; Sodeoka, M. Angew. Chem., Int. Ed. 2007, 46, 5435. (k) Paull, D. H.; Scerba, M. T.; Alden-Danforth, E.;
Widger, L. R.; Lectka, T. J. Am. Chem. Soc. 2008, 130, 17260.
(l) Reddy, D. S.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.;
Kanemasa, S. Angew. Chem., Int. Ed. 2008, 47, 164. (m) Kwiatkowski,
P.; Beeson, T. D.; Conrad, J. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 1738. (n) Xu, J. X.; Hu, Y. L.; Huang, D. F.; Wang, K. -H.;
Xu, C. M.; Niu, T. Adv. Synth. Catal. 2012, 354, 515.

(4) (a) Gribkoff, V. K.; Starrett, J. E., Jr.; Dworetzky, S. I.; Hewawasam, P.; Boissard, C. G.; Cook, D. A.; Frantz, S. W.; Heman, K.; Hibbard, J. R.; Huston, K.; Johnson, G.; Krishnan, B. S.; Kinney, G. G.; Lombardo, L. A.; Meanwell, N. A.; Molinoff, P. B.; Myers, R. A.; Moon, S. L.; Ortiz, A.; Pajor, L.; Pieschl, R. L.; Post-Munson, D. J.; Signor, L. J.; Srinivas, N.; Taber, M. T.; Thalody, G.; Trojnacki, J. T.; Wiener, H.; Yeleswaram, K.; Yeola, S. W. *Nat. Med.* (*N.Y.*) 2001, 7, 471. (b) Hewawasam, P.; Gribkoff, V. K.; Pendri, Y.; Dworetzky, S. I.; Meanwell, N. A.; Martinez, E.; Boissard, C. G.; Post-Munson, D. J.; Trojnacki, J. T.; Yeleswaram, K.; Pajor, L. M.; Knipe, J.; Gao, Q.; Perrone, R.; Starrett, J. E., Jr. *Bioorg. Med. Chem. Lett.* 2002, 12, 1023. (5) For synthesis of MaxiPost using a stoichiometric amount of catalyst, see: (a) Shibata, N.; Ishimaru, T.; Suzuki, E.; Kirk, K. L. J. Org. *Chem.* 2003, 68, 2494. (b) Zoute, L.; Audouard, C.; Plaquevent, J. -C.;

Cahard, D. Org. Biomol. Chem. 2003, 1, 1833. (6) For enantioselective fluorination using a stoichiometric amount of cinchona alkaloid derivatives, see: (a) Shibata, N.; Suzuki, E.; Asahi, T.; Shiro, M. J. Am. Chem. Soc. 2001, 123, 7001. (b) Fukuzumi, T.; Shibata, N.; Sugiura, M.; Nakamura, S.; Toru, T. J. Fluorine Chem.

2006, 127, 548. (7) For catalytic enantioselective fluorination of N-Boc-protected oxindoles, see: (a) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164. (b) Shibata, N.; Kohno, J.; Takai, K.; Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem., Int. Ed. 2005, 44, 4204. (c) Ishimaru, T.; Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem. Int., Ed. 2008, 47, 4157. (d) Deng, Q. -H.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2011, 17, 14922.

(8) For synthesis of 3-fluoro-3-aryl oxindoles via an asymmetric α -arylation, see: Wu, L.; Falivene, L.; Drinkel, E.; Grant, S.; Linden, A.; Cavallo, L.; Dorta, R. *Angew. Chem., Int. Ed.* **2012**, *51*, 2870.

(9) (a) Shen, K.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Sci. 2012, 3, 327. (b) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.

(10) For reviews on "ideal synthesis" and "PGF synthesis", see: (a) Wender, P. A. *Chem. Rev.* **1996**, *96*, 1. (b) Young, I. S.; Baran, P. S. *Nat. Chem.* **2009**, *1*, 193.

(11) For examples and reviews on chiral N,N'-dioxide as ligands in catalytic asymmetric reactions, see: (a) Liu, X. H.; Lin, L. L.; Feng, X. M. Acc. Chem. Res. 2011, 44, 574. (b) Huang, S.-X.; Ding, K. L. Angew. Chem., Int. Ed. 2011, 50, 7734. (c) Malkov, A. V.; Kočovský, P. Eur. J. Org. Chem. 2007, 29. (d) Feng, X. M.; Liu, X. H. Chiral Scandium Complexes in Catalytic Asymmetric Reactions. In Scandium: Compounds, Productions and Applications; Greene, V. A., Ed.; Nova Science: New York, 2011; pp 1–48. (e) Shen, K.; Liu, X. H.; Zheng, K.; Li, W.; Hu, X. L.; Lin, L. L.; Feng, X. M. Chem. Eur. J. 2010, 16, 3736. (f) Shen, K.; Liu, X. H.; Wang, W. T.; Wang, G.; Cao, W. D.; Li, W.; Hu, X. L.; Lin, L. L.; Feng, X. M. Chem. Sci. 2010, 1, 590. (g) Shen, K.; Liu, X. H.; Wang, G.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2011, 50, 4684. (h) Zheng, K.; Lin, L. L.; Feng, X. M. Acta Chim. Sinica 2012, 70, 1785.

(12) 3-Benzyl-2-oxindole was not used as the standard substrate, for it was hard to separate the NFSI and the product via TLC or silica gel. (13) Other metals were screened; see the Supporting Information for details. (14) The desired fluorinated 3-phenyl-substituted oxindole was obtained in 93% yield with 84% ee using 10 mol % of L2-Sc(III) complex.

(15) The experiment about scaling up the Maxipost synthesis (3.5 mmol) resulted in decreased yield and enantioselectivity (53% yield, 86% ee) due to the low solubility of the substrate.

(16) The product **2aa** was obtained in 9% yield using 120 mol % of Na_2CO_3 without L2-Sc(OTf)₃ complex.

(17) Liu, Y. L.; Shang, D. J.; Zhou, X.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15, 2055.

(18) CCDC 900891 contains supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambrige Crystallographic Data Centere via www.ccdc.cam.ac.uk/ data request/cif.

(19) Mikami, K.; Terada, M.; Matsuzawa, H. Angew. Chem., Int. Ed. 2002, 41, 3554.

(20) Wen, Y. H.; Huang, X.; Huang, J. L.; Xiong, Y.; Qin, B.; Feng, X. M. Synlett **2005**, 2445.